

Danfoss - Aftermarket Workflow and Process Creation and Implementation

Team:504

Team Introductions

David Bishop System Engineer

Alex Wilson Design Engineer

Kyle Youmans Design Engineer

Julian Villamil System Engineer

David Bishop

Sponsor and Advisor

Engineering Mentor Shayne McConomy, Ph.D Professor

Project Advisor Yousuf Ali, Ph.D. Professor Engineering Mentor Stephen Seymore Operations Engineer Director

Han

David Bishop

"The objective of this project is to design an integrated system that generates a bill of materials for a given aftermarket compressor using records provided by Danfoss's investigation team"

David Bishop

Project Background

David Bishop

FAMU-FSU Engineering

David Bishop

What's the Process?

Engineering

What's the Process?

Department of Mechanical Engineering

Department of Mechanical Engineering

Input Files

Kyle Youmans

Investigation Failure Report

- Exported from SAP software Cool Inspector
- Contains 287 columns of investigations information
- Part replacement decisions made using this file
- Contains multiple compressor cases sorted by serial number

	A	В	С	D	Е	F		G	Н	I	J	K	L	M N	0	р	Q	R	S	Т	U	V	W
1	Manufi 🔻	Compr	Plat for 💌	Applica 👻	Claim Number 🛛 🔻	Model No) 🔽	Serial No 💌	Customer Na 🔻	Inspect 🔻	IC/IQC -	Compr 🔻	IC Rep 🖛	Manuf - Recor	🔻 0-6 Mo 🔻	Case C 🔻	Produc 🔻	Custon 🔻	Custon 🔻 R	eason 🔻 I	Reason 🔻	Status 💌	Regist e 🔻
																				1	KEPAIK_		
2	DTC Tall	aTT/TG		0	8550074469	TT350-G6-1-HL-E-0-NC		140295010	Multistack LLC	DTC FIC	11/4/2020	11/4/2020	11/4/2020) 1/29/2014 No	No	Field Retu	1 0	USA		0 1	F\$350E	In-Progre	e Kevin Doe
3	DTC Tall	aTT/TG		0	8550074888-8590544877	TT700-G-1-ST-F-O-NC		1930850007	Daikin Applied	DTC FIC	11/3/2020	11/2/2020	11/3/2020	0 11/4/2019 Yes	No	Field Retu	1 0	USA		0 0	Compress	In-Progre	: Kevin Do
4	DTC Tall	aTT/TG		0	8550074832	TT300-G-1-ST-E-O-NC		151815040	Smardt Montre	a DTC FIC	11/2/2020	########	11/2/2020	0 6/30/2015 No	No	Field Retu	1 0	CANADA		0 1	Eval & Re	In-Progre	e Kevin Doe

Х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV	AW	AX	AY
Summi 💌	Approv 🔻	picture 👻	Boards 🔻	Compr 👻	Compr 🔻	DTCPa 🕶	Comm 👻	Compr 👻	Specify 🖛	Numbe 🕶	SoftSta 💌	Soft Sta 👻	SoftSta 👻	DCDC	DCDC.	DCDC	BackPl: 🔻	BackPl; ▼	BackPl: 🔻	SerialD 💌	SerialD 🔻	SerialD 🔻	BMCC	BMCC -	BMCC 💌	PWM_ ▼	PWM_ 🔻
dson																											
dson																											
dson																											

.

-

Kyle Youmans

Obsolescence File

		Revisions			
Component	Part Number(s)	Affected	Specification	Affected Range	Reason
IGBT Inverter (SKiiP 513)	390032	All	Inverter should run full life expectancy at all acceptable operating conditions.	All TT350, TT400, & TT500 Compressors built before May 2012	The SKiiP 513 is not as robust as the SKiiP 613 and has shown a higher early failure rate.
Softstart	220135, 220136, 220137, 220138, 224000, 224001, 224002, 224003, 224004-1, 224004-2, 224004-3, 224004-4	All	All revisions should be replaced with 200193.	All models	200193 functions with every voltage, thus eliminating the need to maintain multiple softstarts while improving reliability.
DC/DC	340029, 342029, 370029, 380029	All	All revisions should be replaced with 300287.	All models	The earlier DC/DC revisions do not selfprotect in the event of an output short and, in the case of the TT350, do not have sufficient power to support the axial bearing in the event of a high pressure ratio shutdown. These two problems have been addressed in the redesigned 300287.
Backplane	200125	Pre Rev K	All revisions prior to Rev K should be replaced.	All models	Revisions prior to rev K should be replaced due the lower reliability of certain capacitors which were marginally rated.
Serial Driver	300047	Pre Rev G	All revisions prior to Rev G should be replaced.	All models	All revisions prior to Rev G utilized mechanical relays for the cooling solenoid control circuit which could wear out prematurely leading to overcooling. These have been replaced with solid state relays.
BMCC	300046	Pre Rev L	All revisions prior to Rev L should be replaced.	All models	Revisions prior to Rev L contained less actuate P/T sensor circuits leading to excessive variation in sensor reading.

Kyle Youmans

ENG-00299: Engineering Obsolescence Plan

Controlled Document

Classified as Business

Updated: 22 July 2020, Revision A.3

Danfoss

ENGINEERING TOMORROW

Determining Obsolescence

					ENGINEERING TOMORROW	Danfoss
Component	Part Number(s)	Revisions Affected	Specification	Affected Range	Reason	
IGBT Inverter (SKiiP 513)	390032	All	Inverter should run full life expectancy at all acceptable operating conditions.	All TT350, TT400, & TT500 Compressors built before May 2012	The SKiiP 513 is not as has shown a higher ear	robust as the SKiiP 613 and ly failure rate.

- Parts are considered obsolete after considerable time has passed
- Determined by either date or revision number
- Script compares today's date with the manufactured date
- Script determines obsolescence by ensuring that the model in question is one of the models listed in the affected range

Kyle Youmans

Decoding Serial Numbers

· Danfoss has two versions of serial number: an old and a new

Old Serial Number

New Serial Number

- The old serial numbers can be used to capture the revision number
- The new serial numbers capture the date
- Now we separate logic for each serial number: old and new.
- This information can be extracted and decoded in MATLAB to determine obsolescence for a given part number.
- This can then be used to generate a bill of materials

Kyle Youmans

Decoding Compressor Model Information

- The highlighted text is the information that needs to be extracted from the file.
- This will be done by extracting characters from the string until the character in question is equal to a digit.
- Then the script will extract three characters after that.

Model No

TT350-<mark>G</mark>6-1-HL-E-0-NC

TT700-G-1-ST-F-O-NC

TT300-G-1-ST-E-O-NC

TT300-<mark>G</mark>7-1-ST-<mark>E</mark>-0-NC

TT350-E-1-ST-F-O-CH

MATLAB Designer App GUI Template

Department of Mechanical Engineering

Looking Forward

Kyle Youmans

Future Challenges

Department of Mechanical Engineering

Future Work

- Determine what data from our input file is relevant
- Begin making a prototype given the current relevant data
- Construct an updatable obsolescence input file
- Meet with Ashley Daniels, a planner at Danfoss who will show us her role as a material handler

Kyle Youmans

Reference

- Seymore, Stephen. (2020). Aftermarket Services Danfoss Turbocor[®] Compressors. [PowerPoint slides]. Retrieved from https://3.basecamp.com/3939307/buckets/18515621/uploads/3119943154
- [2] McConomy, Shayne. (2020). Aftermarket Workflow Project 2020. [Word document]. Retrieved from https://3.basecamp.com/3939307/buckets/18515621/uploads/3078752695
- Bishop et al. (2020). SD T504 201106 Concept Generation and Selection. [Word document]. Retrieved from https://famu-fsu-eng.instructure.com/courses/4476/assignments/18861/submissions/102840000000613 46
- Seymore, Stephen. (2020). Special Compressor Process. Danfoss Turbocor[®]. [PDF file]. Retrieved from https://3.basecamp.com/3939307/buckets/18515621/uploads/3119943196

Questions?

Department of Mechanical Engineering

Backup Slides

Department of Mechanical Engineering

Scanner System

- Danfoss has a current scanning system
- Danfoss also has a quality control department

24

Future Aftermarket Repair Programs

David Bishop

Morphological Chart

Morphological Chart												
Coding Language	Python	MATLAB	С									
Quality Control Method	Pareto Analysis	Stratification	Statistical Sampling									
Inventory Control Method	Six Sigma	Drop shipping	Lean Manufacturing									

FAMU-FSU Engineering

26

Binary Pairwise

Binary Pairwise Graph

	1	2	3	4	5	Total
1. Organization	-	1	1	1	1	4
2. Automate	0	-	1	1	1	3
3.Quality Control	0	0	-	1	1	2
4. User Experience	0	0	0	-	0	0
5. Adaptability	0	0	0	1	-	1
Total	0	1	2	4	3	10

House of Quality

House of Quality	7								
					Engineeri	ing Charac	teristics		
Improvement Direction		↑	↑	Ŷ	↑	Ŷ	Ŷ	↑	Ŷ
	Units	sec	b y te	%	n/a	n/a	n/a	n/a	%
Customer Requirements	Importance Weight Factor		Storage Capacity	Accuracy	Usability	Aesthetic	Maintainability	Simplicity	Reliability
Organizes	5	1	3	9	1	1	3	1	9
Automate	4	1	0	1	9	0	9	1	3
Controls Quality	3	0	1	9	1	0	3	3	9
Interacts with User	2	0	1	1	9	9	0	3	1
Adaptible	1	0	3	1	9	1	9	3	3
Raw Scor	e (391)	9	23	79	71	24	69	27	89
Relative W	2.30%	5.88%	20.20%	18.16%	6.14%	17.65%	6.91%	22.76%	
Rank O	8	7	2	3	5	4	6	1	

Department of Mechanical Engineering

First Pugh Chart

					Concepts												
Selec	ction Criteria	1	2	3	4	5	6	7	8								
Speed		+	+	+	+	+	+	+	+								
Storage Capacity		+	-	-	S	S	-	+	+								
Accuracy			+	+	+	+	+	+	+								
Jsability	Datum (Current Method)	+	+	+	+	+	+	+	+								
Aesthetic		+	+	+	S	+	+	+	+								
Maintainability		+	+	+	+	+	+	+	+								
Simplicity		+	-	-	+	+	+	+	+								
Reliability		+	+	+	+	+	+	+	+								
Pluses			6	6	6	7	7	8	8								
Minuses			2	2	0	0	1	0	0								

Department of Mechanical Engineering

Second Pugh Chart

			Co	ncepts		
Selectio	n Criteria	1	4	6	7	8
Speed		+	S	+	+	+
Storage Capacity		+	-	-	+	S
Accuracy		+	-	+	+	+
Usability	Datum (Concept 5)	+	-	+	+	+
Aesthetic		+	-	+	+	+
Maintainability		+	-	+	+	+
Simplicity		+	-	+	+	+
Reliability		+	-	+	+	+
Ph	Ises	8	0	7	8	7
Mir	0	7	1	0	0	

Department of Mechanical Engineering

Third Pugh Chart

			Concepts	5
Selection	n Criteria	1	6	8
Speed		S	+	-
torage Capacity		S	-	S
Accuracy		+	+	S
Usability	Datum (Concept 7)	-	+	S
Aesthetic		S	S	S
Maintainability		-	+	+
Simplicity		+	-	+
Reliability		+	+	S
Ph	ises	3	5	2
Mir	nuses	1	2	1

Department of Mechanical Engineering

Target Catalog

Metric	Target
Storage Capacity	0 < x < 10 Megabytes
Ease of Use	Number of clicks by user 1
Aesthetic Appeal	1-5 (customer satisfaction survey) 5
Information Obtained to Total Information Needed	100%
Processing Speed	2 GHz to 4.0 GHz
File Conversion Accuracy	Files converted to files requested 100%
Data Format Accuracy	File matches column and row assigned Binary (1-0)
Part Conversion Efficiency	Ratio of parts exchanged correctly to total parts exchanged 100%
Reliability	Below 7% average failure rate
Code Complexity	1-5 (customer satisfaction survey) 5
File Location Accuracy	Files placed in the correct location Binary (1-0)
Organization	1-5 (customer satisfaction survey) 5

Department of Mechanical Engineering

Customer Survey

Customer Satisfaction Survey					
Question	Ord	ler of	f Sati	isfact	tion
1 = unacceptable 2 = poor 3 = satisfactory 4 = good 5 = excellent	1	2	3	4	5
How aesthetically appealing is the display of the product?					
Is the code readable, organized, and reproducible?					
How does the product compare to the previously used method?					

	Criteria Comparison Matrix [C]							
		Storage	Accurac	Usabilit				Reliabilit
	Speed	Capacity	у	У	Aesthetic	Maintainability	Compactness	у
Speed	1	3	5	3	0.33	5	3	5
Storage Capacity	0.33	1	5	0.33	0.20	3	1	3
Accuracy	0.20	0.20	1	0.33	0.20	0.33	0.33	1
Usability	0.33	3	3	1	0.33	3	1	3
Aesthetic	3	5	5	3	1	5	5	5
Maintainability	0.20	0.33	3	0.33	0.20	1	0.33	1
Compactness	0.33	1	3	1	0.20	3	1	3
Reliability	0.20	0.33	1	0.33	0.20	1	0.33	1
Sum	5.60	13.87	26	9.33	2.67	21.33	12	22

	Normalized Criteria Comparison Matrix								
	Speed	Storage Capacity	Accuracy	Usability	Aesthetic	Maintainability	Compactness	Reliability	Criteria Weight (W)
Speed	0.179	0.216	0.192	0.321	0.125	0.234	0.250	0.227	0.218
Storage Capacity	0.060	0.072	0.192	0.036	0.075	0.141	0.083	0.136	0.099
Accuracy	0.036	0.014	0.038	0.036	0.075	0.016	0.028	0.045	0.036
Usability	0.060	0.216	0.115	0.107	0.125	0.141	0.083	0.136	0.123
Aesthetic	0.536	0.361	0.192	0.321	0.375	0.234	0.417	0.227	0.333
Maintainability	0.036	0.024	0.115	0.036	0.075	0.047	0.028	0.045	0.051
Compactness	0.060	0.072	0.115	0.107	0.075	0.141	0.083	0.136	0.099
Reliability	0.036	0.024	0.038	0.036	0.075	0.047	0.028	0.045	0.041
Sum	1	1	1	1	1	1	1	1	1

Consistency Check					
$\{Ws\}=[C]\{W\}$		$Cons = \{Ws\}./\{W\}$			
Weighted Sum Factor	{W} Criteria Weights	Consistency Vector			
1.932	0.218	8.854			
0.834	0.099	8.393			
0.298	0.036	8.274			
1.087	0.123	8.841			
2.986	0.333	8.969			
0.417	0.051	8.221			
0.844	0.099	8.553			
0.345	0.041	8.391			

λ =8.562 CI= (λ -n)/(n-1) = (8.562-8)/(8-1)=.0803 CR= CI/RI=.0803/1.4=.0574

CR < 0.1

Department of Mechanical Engineering

Speed Comparison Norm						
				Design		
	Script and		Digital	Alternative		
	Database	A.I.	Library	Priorities		
Script and Database	0.091	0.130	0.048	0.090		
A.I.	0.455	0.652	0.714	0.607		
Digital Library	0.455	0.217	0.238	0.303		
Sum	1	1	1	1		

Consistency Check					
$\{Ws\}=[C]\{W\}$		Cons={WS}./{			
Weighted Sum	{W} Criteria	W} Consistency			
Factor	Weights	Vector			
0.272	0.090	3.031			
1.965	0.607	3.238			
0.954	0.303	3.145			

λ=3.138 CI= (λ-n)/(n-1) = (8.562-3)/(3-1)=.069 CR= CI/RI=.0803/0.52=0.132

AHP

Storage Capacity Comparison Norm						
				Design		
	Script and			Alternative		
	Database	A.I.	Digital Library	Priorities		
Script and Database	0.143	0.143	0.143	0.143		
A.I.	0.714	0.714	0.714	0.714		
Digital Library	0.143	0.143	0.143	0.143		
Sum	1.000	1.000	1.000	1.000		

Consistency Check					
	Cons={WS}./				
$\{Ws\} = [C]\{W\}$		{W}			
Weighted Sum	{W} Criteria	Consistency			
Factor	Weights	Vector			
0.429	0.143	3			
2.143	0.714	3			
0.429	0.143	3			

 $\lambda=3$ CI= (λ -n)/(n-1) = (3-3)/(3-1)=0 CR= CI/RI=0/0.52=0

Usability Comparison Norm						
				Design		
	Script and		Digital	Alternative		
	Database	A.I.	Library	Priorities		
Script and Database	0.231	0.217	0.333	0.260		
A.I.	0.692	0.652	0.556	0.633		
Digital Library	0.077	0.130	0.111	0.106		
Sum	1	1	1	1		

Consistency Check					
		Cons={WS}./			
$\{Ws\} = [C]\{W\}$		$\{\mathbf{W}\}$			
Weighted Sum	{W} Criteria	Consistency			
Factor	Weights	Vector			
0.790	0.260	3.033			
1.946	0.633	3.072			
0.320	0.106	3.011			

λ=3.137 CI= (λ-n)/(n-1) = (3.137-3)/(3-1)=0.069 CR= CI/RI=0.069/0.52=0.132

Accuracy Comparison Norm						
				Design		
	Script and	A.I		Alternative		
	Database		Digital Library	Priorities		
Script and Database	0.143	0.2	0.077	0.140		
A.I.	0.429	0.6	0.692	0.574		
Digital Library	0.429	0.2	0.231	0.286		
Sum	1	1	1	1		

Consistency Check					
		Cons={WS}./			
$\{Ws\} = [C]\{W\}$		$\{\mathbf{W}\}$			
Weighted Sum	{W} Criteria	Consistency			
Factor	Weights	Vector			
0.427	0.140	3.049			
1.853	0.574	3.230			
0.897	0.286	3.133			

λ=3.039 CI= (λ-n)/(n-1) = (3.039-3)/(3-1)=0.019 CR= CI/RI=0.019/0.52=0.037

Aesthetic Comparison Norm						
Design						
	Script and	A.I		Alternative		
	Database		Digital Library	Priorities		
Script and Database	0.2	0.2	0.2	0.2		
A.I.	0.6	0.6	0.6	0.6		
Digital Library	0.2	0.2	0.2	0.2		
Sum	1	1	1	1		

Consistency Check					
$\{Ws\}=[C]\{W\}$		$\{\mathbf{W}\}$			
Weighted Sum	{W} Criteria	Consistency			
Factor	Weights	Vector			
0.6	0.2	3			
1.8	0.6	3			
0.6	0.2	3			

 $\lambda=3$ CI= (λ -n)/(n-1) = (3-3)/(3-1)=0 CR= CI/RI=0/0.52=0

Maintainability Comparison Norm						
				Design		
	Script and	A.I		Alternative		
	Database	•	Digital Library	Priorities		
Script and Database	0.2	0.2	0.2	0.2		
A.I.	0.6	0.6	0.6	0.6		
Digital Library	0.2	0.2	0.2	0.2		
Sum	1	1	1	1		

Consistency Check					
	Cons={WS}./				
$\{Ws\} = [C]\{W\}$		$\{\mathbf{W}\}$			
Weighted Sum	{W} Criteria	Consistency			
Factor	Weights	Vector			
0.6	0.2	3			
1.8	0.6	3			
0.6	0.2	3			

 $\lambda=3$ CI= (λ -n)/(n-1) = (3-3)/(3-1)=0 CR= CI/RI=0/0.52=0

Compactness Comparison Norm					
				Design	
	Script and		Digital	Alternative	
	Database	A.I.	Library	Priorities	
Script and Database	0.231	0.429	0.2	0.286	
A.I.	0.077	0.143	0.2	0.140	
Digital Library	0.692	0.429	0.6	0.574	
Sum	1	1	1	1	

Consistency Check					
		Cons={WS}./			
$\{Ws\} = [C]\{W\}$		$\{\mathbf{W}\}$			
Weighted Sum	{W} Criteria	Consistency			
Factor	Weights	Vector			
0.897	0.286	3.133			
0.427	0.140	3.049			
1.853	0.574	3.230			

 λ =3.137 CI= (λ -n)/(n-1) = (3.137-3)/(3-1)=0.069 CR= CI/RI=0.069/0.52=0.132

	antoss
0	ungett

Reliability Comparison Norm						
				Design		
		A.I		Alternative		
	Script and Database		Digital Library	Priorities		
Script and Database	0.2	0.2	0.2	0.2		
A.I.	0.6	0.6	0.6	0.6		
Digital Library	0.2	0.2	0.2	0.2		
Sum	1	1	1	1		

Consistency Check					
		Cons={WS}./{			
$\{Ws\} = [C]\{W\}$		W }			
Weighted Sum	{W} Criteria	Consistency			
Factor	Weights	Vector			
0.6	0.2	3			
1.8	0.6	3			
0.6	0.2	3			

 $\lambda=3$ CI= (λ -n)/(n-1) = (3-3)/(3-1)=0 CR= CI/RI=0/0.52=0

Final Rating Matrix									
Selection	Criteria	Speed	Storage Capacity	Accuracy	Usability	Aesthetic	Maintainability	Compactness	Reliability
Script and Da	atabase	0.090	0.143	0.140	0.260	0.2	0.2	0.286	0.2
A.I.		0.607	0.714	0.574	0.633	0.6	0.6	0.140	0.6
Digital Libra	ry	0.303	0.143	0.286	0.106	0.2	0.2	0.574	0.2

{W} Criteria	
Weights	
0.218	
0.099	
0.036	
0.123	
0.333	
0.051	
0.099	
0.041	

Concept	Alternative
Concept	Value
Script and	
Database	0.184
A.I.	0.571
Digital Library	0.245

